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ABSTRACT

For a convex body K ⊂ Rn and i ∈ {1, . . . , n− 1}, the function assigning

to any i-dimensional subspace L of Rn, the i-dimensional volume of the

orthogonal projection of K to L, is called the i-th projection function of

K. Let K, K0 ⊂ Rn be smooth convex bodies with boundaries of class

C2 and positive Gauss–Kronecker curvature and assume K0 is centrally

symmetric. Excluding two exceptional cases, (i, j) = (1, n−1) and (i, j) =

(n − 2, n − 1), we prove that K and K0 are homothetic if their i-th and

j-th projection functions are proportional. When K0 is a Euclidean ball

this shows that a convex body with C2 boundary and positive Gauss–

Kronecker with constant i-th and j-th projection functions is a Euclidean

ball.
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1. Introduction and main results

A convex body in Rn is a compact convex set with nonempty interior. If K

is a convex body and L a linear subspace of Rn, then K|L is the orthogonal

projection of K onto L. Let G(n, i) be the Grassmannian of all i-dimensional

linear subspaces of Rn. A central question in the geometric tomography of

convex sets is to understand to what extent information about the projections

K|L with L ∈ G(n, i) determines a convex body. Possibly the most natural,

but rather weak, information about K|L is its i-dimensional volume Vi(K|L).

The function L 7→ Vi(K|L) on G(n, i) is the i-th projection function (or the

i-th brightness function) of K. When i = 1 this is the width function

and when i = n − 1 the brightness function. If this function is constant,

then the convex body K is said to have constant i-brightness. For n ≥ 2

and any i ∈ {1, . . . , n − 1}, by classical results about the existence of sets with

constant width and results of Blaschke [1, pp. 151–154] and Firey [6] there

are nonspherical convex bodies of constant i-brightness (cf. [7, Thm 3.3.14,

p. 111; Rmk 3.3.16, p. 114]). Corresponding examples of smooth convex bodies

with everywhere positive Gauss–Kronecker curvature can be obtained by known

approximation arguments (see [21, §3.3] and [12]). Thus it is not possible to

determine if a convex body is a ball from just one projection function. For other

results about determining convex bodies from a single projection function see

Chapter 3 of Gardner’s book [7] and the survey paper [10] of Goodey, Schneider,

and Weil.

Therefore, as pointed out by Goodey, Schneider, and Weil in [10] and [11],

it is natural to ask whether a convex body with two constant projection func-

tions must be a ball. This question leads to the more general investigation

of pairs of convex bodies, one of which is centrally symmetric, that have two

of their projection functions proportional. Examples in the smooth and the

polytopal setting, due to Campi [3], Gardner and Volčič [8], and to Goodey,

Schneider, and Weil [11], show that the assumption of central symmetry on

one of the bodies cannot be dropped. A convex body is said to be of class

C2
+ if its boundary, ∂K, is of class C2 and has everywhere positive Gauss–

Kronecker curvature. It is well-known that a convex body of class C2
+ has a C2

support function, but the converse need not be true. A classical result [20] of

S. Nakajima (who also published under the name A. Matsumura) from 1926

states that a three-dimensional convex body of class C2
+ with constant width

and constant brightness is a Euclidean ball. This answers the previous ques-

tion for smooth convex bodies in R3. Our main result generalizes Nakajima’s
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theorem to the case of pairs of convex bodies with proportional projection func-

tions, slightly relaxes the smoothness assumption, and, more importantly, pro-

vides an extension to higher dimensions.

Theorem 1.1: Let K, K0 ⊂ Rn be convex bodies with K0 of class C2
+ and

centrally symmetric and with K having C2 support function. Let 1 ≤ i <

j ≤ n − 1 be integers such that i /∈ {1, n − 2} if j = n − 1. Assume there are

real positive constants α, β > 0 such that

Vi(K|L) = αVi(K0|L) and Vj(K|U) = βVj(K0|U),

for all L ∈ G(n, i) and U ∈ G(n, j). Then K and K0 are homothetic.

Other than Nakajima’s result the only previously known case is i = 1 and

j = 2 proven by Chakerian [4] in 1967. Letting K0 be a Euclidean ball in the

theorem, we get the following important special case.

Corollary 1.2: Let K ⊂ Rn be a convex body with C2 support function.

Assume that K has constant i-brightness and constant j-brightness, where

1 ≤ i < j ≤ n − 1 and i /∈ {1, n − 2} if j = n − 1. Then K is a Euclidean

ball.

If ∂K is of class C2 and K has constant width, then the Gauss–Kronecker

curvature of K is everywhere positive. Thus we can conclude that K is of class

C2
+, which yields the following corollary.

Corollary 1.3: Let K ⊂ R
n be a convex body of class C2 with constant width

and constant k-brightness for some k ∈ {2, . . . , n − 2}. Then K is a Euclidean

ball.

Corollary 1.3 does not cover the case that K has constant width and bright-

ness, which we consider the most interesting open problem related to the sub-

ject of this paper. Under the strong additional assumption that K and K0 are

smooth convex bodies of revolution with a common axis, we can also settle the

two cases not covered by Theorem 1.1.

Proposition 1.4: Let K, K0 ⊂ R
n be convex bodies that have a common axis

of revolution such that K has C2 support function and K0 is centrally symmetric

and of class C2
+. Assume that K and K0 have proportional brightness and

proportional i-th brightness function for an i ∈ {1, n−2}. Then K is homothetic

to K0. In particular, if K0 is a Euclidean ball, then K is also a Euclidean ball.

From the point of view of convexity theory the restriction to convex bodies

of class C2
+ or with C2 support functions is not natural and it would be of great



320 R. HOWARD AND D. HUG Isr. J. Math.

interest to extend Theorem 1.1 and Corollaries 1.2 and 1.3 to general convex

bodies. In the case of Corollary 1.3 when n ≥ 3, i = 1 and j = 2 this was done

in [15]. However, from the point of view of differential geometry, the class C2
+ is

quite natural and the convex bodies of constant i-brightness in C2
+ have some

interesting differential geometric properties. If ∂K is a C2 hypersurface, then (as

usual) x ∈ ∂K is called an umbilic point of K if all of the principal curvatures

of ∂K at x are equal. In the C2
+ case, this is equivalent to the condition that

all of the principal radii of curvature of K at the outer unit normal vector of K

at x are equal. The following is a special case of Proposition 5.2 below.

Proposition 1.5: Let K be a convex body of class C2
+ in Rn with n ≥ 5, and

let 2 ≤ k ≤ n − 3. Assume that K has constant k-brightness. Then ∂K has a

pair of umbilic points x1 and x2 such that the tangent planes of ∂K at x1 and

x2 are parallel and all of the principal curvatures of ∂K at x1 and x2 are equal.

This is surprising because when n ≥ 4 the set of convex bodies of class C2
+

with no umbilic points is a dense open set in C2
+ with the C2 topology.

Finally, we comment on the relation of our results to those in the paper [14]

of Haab. All our main results are stated by Haab, but his proofs are either

incomplete or have errors (see the review in Zentralblatt). In particular, the

proof of his main result, stating that a convex body of class C2
+ with constant

width and constant (n − 1)-brightness is a ball, is wrong (the proof is based

on [14, Lemma 5.3] which is false even in the case of n = 1) and this case is still

open. We have included remarks at the appropriate places relating our results

and proofs to those in [14]. Despite the errors in [14], the paper still has some

important insights. In particular, while Haab’s proof of his Theorem 4.1 (our

Proposition 3.5) is incomplete, see Remark 3.2 below, the statement is correct

and is the basis for the proofs of most of our results. Also it was Haab who

realized that having constant brightness implies the existence of umbilic points.

While his proof is incomplete and the details of the proof here differ a good deal

from those of his proposed argument, the global structure of the proof here is

still indebted to his paper.

2. Preliminaries

We will work in the Euclidean space Rn with the usual inner product 〈·, ·〉

and the induced norm | · |. The support function of a convex body K in Rn

is the function hK : R
n → R given by hK(x) = maxy∈K〈x, y〉. The function

hK is homogeneous of degree one. A convex body is uniquely determined by

its support function. Subsequently, we summarize some facts from [21] which
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are needed. An important fact for us, first noted by Wintner [22, Appendix],

is that if K is of class C2
+, then its support function hK is of class C2 on

Rn r {0} and the principal radii of curvature (see below for a definition) of K

are everywhere positive (cf. [21, p. 106]). Conversely, if the support function

of K is of class C2 on Rn r {0} and the principal radii of curvature of K are

everywhere positive, then K is of class C2
+ (cf. [21, p. 111]). In this paper, we

say that a support function is of class C2 if it is of class C2 on Rn r {0}. Let L

be a linear subspace of Rn. Then the support function of the projection K|L is

the restriction hK|L = hK |L. In particular, if hK is of class C2, then hK|L is of

class C2 in L. As an easy consequence we obtain that if K is of class C2
+, then

K|L is of class C2
+ in L.

All of our proofs work for convex bodies K ⊂ Rn that have a C2 support

function. That this leads to a genuine extension of the C2
+ setting can be seen

from the following example. Let K be of class C2
+ and let r0 be the minimum of

all of the principal radii of curvature of ∂K. Then by Blaschke’s rolling theorem

(cf. [21, Thm 3.2.9, p. 149]) there is a convex set K1 and a ball Br0
of radius r0

such that K is the Minkowski sum K = K1 + Br0
and no ball of radius greater

than r0 is a Minkowski summand of K. Thus no ball is a summand of K1, for

if K1 = K2 + Br, r > 0, then K = K1 + Br0
= K2 + Br+r0

, contradicting

the maximality of r0. As every convex body with C2 boundary has a ball as a

summand, it follows that K1 does not have a C2 boundary. But the support

function of K1 is hK1
= hK − r0| · | and therefore hK1

is C2. When K1 has

nonempty interior, for example when K is an ellipsoid with all axes of different

lengths, then K1 is an example of a convex set with C2 support function, but

with ∂K1 not of class C2.

If the support function h = hK of a convex body K ⊂ R
n is of class C2,

then let gradhK be the usual gradient of hK . This is a C1 vector field on

Rn r {0} (which is homogeneous of degree zero). Let Sn−1 be the unit sphere

in Rn. Then for u ∈ Sn−1 the unique point on ∂K with outward unit normal u

is gradhK(u) (cf. [21, (2.5.8), p. 107]). In the case where K is of class C2
+, the

map Sn−1 → ∂K, u 7→ gradhK(u), is the inverse of the spherical image map

(Gauss map) of K. For this reason, this map is called the reverse spherical

image map (cf. [21, p. 107]) of K whenever hK is of class C2. Let d2hK be

the usual Hessian of hK viewed as a field of selfadjoint linear maps on Rn r{0}.

That is, for u ∈ R
n

r {0} and x ∈ R
n, d2hK(u)x is the directional derivative

of gradhK at u in the direction x. As hK is homogeneous of degree one, for

any u ∈ Sn−1 it follows that d2hK(u)u = 0. Since d2hK(u) is selfadjoint, this
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implies that the orthogonal complement u⊥ of u is invariant under d2hK(u). As

u⊥ = TuSn−1 we can then define a field of selfadjoint linear maps L(hK) on the

tangent spaces to Sn−1 by

L(hK)(u) := d2hK(u)
∣

∣

u⊥
.

Clearly, L(hK)(u) can (and occasionally will) be identified with a symmet-

ric bilinear form on u⊥, via the scalar product induced on u⊥ from R
n. For

given u ∈ Sn−1, L(hK)(u) is the reverse Weingarten map of K at u. The

eigenvalues of L(hK)(u) are the principal radii of curvature of K at u

(cf. [21, p. 108]). Due to the convexity of the support function, these are non-

negative real numbers (the corresponding bilinear form is positive semidefinite).

Recall that if K is of class C2
+, the derivative of the Gauss map of K at x ∈ ∂K

is the Weingarten map of K at x. This is a selfadjoint linear map of the tan-

gent space of ∂K at x whose eigenvalues are called the principal curvatures

of K at x. In the C2
+ case, L(hK)(u) is the inverse of the Weingarten map of

K at x = gradhK(u), for any u ∈ Sn−1, and both maps are positive definite.

In the following, the notion of the (surface) area measure of a convex body will

be useful. In the case of general convex bodies the definition is a bit involved,

see [21, pp. 200–203] or [7, pp. 351–353], but we will only need the case of bodies

with support functions of class C2 where an easier definition is possible. Let

K ⊂ Rn be a convex body with support function hK of class C2. Then the (top

order) surface area measure Sn−1(K, ·) of K is defined on Borel subsets ω of

Sn−1 by

(2.1) Sn−1(K, ω) :=

∫

ω

det(L(hK)(u))du,

where du denotes integration with respect to spherical Lebesgue measure. (See,

for instance, [21, (4.2.20), p. 206; Chap. 5] or [7, (A.7), p. 353].)

We need also a generalization of the operator L(hK). Let K0 ⊂ Rn be a

convex body of class C2
+, and let h0 be the support function of K0. As K0 is of

class C2
+, the linear map L(h0)(u) is positive definite for all u ∈ Sn−1. Therefore

L(h0)(u) will have a unique positive definite square root which we denote by

L(h0)
1/2(u). Then for any convex body K ⊂ Rn with support function hK of

class C2, we define

(2.2) Lh0
(hK)(u) := L(h0)

−1/2(u)L(hK)(u)L(h0)
−1/2(u)

where L(h0)
−1/2(u) is the inverse of L(h0)

1/2(u). It is easily checked that if K

is of class C2
+, then Lh0

(hK)(u) is positive definite for all u. Furthermore, we
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always have

det(Lh0
(hK)(u)) =

det(L(hK)(u))

det(L(h0)(u))
.

The linear map Lh0
(hK)(u) has the interpretation as the inverse Weingarten

map in the relative geometry defined by K0. This interpretation will not be

used in the present paper, but it did motivate some of the calculations.

3. Projections and support functions

3.1. Some multilinear algebra. The geometric condition of proportional

projection functions can be translated into a condition involving reverse Wein-

garten maps. In order to fully exploit this information, the following lemmas will

be used. In fact, these lemmas fill a gap in [14, §4]. For basic results concerning

the Grassmann algebra and alternating maps, which are used subsequently, we

refer to [17], [18].

Lemma 3.1: Let G, H, L: Rn → Rn be positive semidefinite linear maps. Let

k ∈ {1, . . . , n}, and assume that

(3.1) 〈(∧kG + ∧kH)ξ, ξ〉 = 〈(∧kL)ξ, ξ〉

for all decomposable ξ ∈
∧k

Rn. Then

(3.2) ∧kG + ∧kH = ∧kL.

Proof: It is sufficient to consider the cases k ∈ {2, . . . , n−1}. For ξ, ζ ∈
∧k

R
n,

we define

ωL(ξ, ζ) := 〈(∧kL)ξ, ζ〉.

Then, for any u1, . . . , uk+1, v1, . . . , vk−1 ∈ Rn, the identity

(3.3)

k+1
∑

j=1

(−1)jωL(u1 ∧ · · · ∧ ǔj ∧ · · · ∧ uk+1; uj ∧ v1 ∧ · · · ∧ vk−1) = 0

is satisfied, where ǔj means that uj is omitted. Thus, in the terminology of [16],

ωL satisfies the first Bianchi identity. Once (3.3) has been verified, the proof

of Lemma 3.1 can be completed as follows. Define ωG and ωH by replacing L

in the definition of ωL by G and H , respectively. Then ωG,H := ωG + ωH also

satisfies the first Bianchi identity. By assumption,

ωG,H(ξ, ξ) = ωL(ξ, ξ)
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for all decomposable ξ ∈
∧k

Rn. Proposition 2.1 in [16] now implies that

ωG,H(ξ, ζ) = ωL(ξ, ζ)

for all decomposable ξ, ζ ∈
∧k

Rn, which yields the assertion of the lemma.

For the proof of (3.3) we proceed as follows. Since L is positive semidefinite,

there is a positive semidefinite linear map ϕ: Rn → Rn such that L = ϕ ◦ ϕ.

Hence

ωL(u1 ∧ · · · ∧ uk; v1 ∧ · · · ∧ vk) = 〈ϕu1 ∧ · · · ∧ ϕuk, ϕv1 ∧ · · · ∧ ϕvk〉

for all u1, . . . , vk ∈ Rn. For a1, . . . , ak+1, b1, . . . , bk−1 ∈ Rn we define

Φ(a1, . . . , ak+1; b1, . . . , bk−1)

:=
k+1
∑

j=1

(−1)j〈a1 ∧ · · · ∧ ǎj ∧ · · · ∧ ak+1; aj ∧ b1 ∧ · · · ∧ bk−1〉.

We will show that Φ = 0. Then, substituting ai = ϕ(ui) and bj = ϕ(vj), we

obtain the required assertion (3.3).

For the proof of Φ = 0, it is sufficient to show that Φ vanishes on the vectors

of an orthonormal basis e1, . . . , en of Rn, since Φ is a multilinear map. So let

a1, . . . , ak+1 ∈ {e1, . . . , en}, whereas b1, . . . , bk−1 are arbitrary.

If a1, . . . , ak+1 are distinct, then the summands of Φ vanish, since 〈ai, aj〉 = 0

for i 6= j. Here we use that

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det(〈ui, vj〉
k
i,j=1)

for u1, . . . , uk, v1, . . . , vk ∈ Rn.

Otherwise, ai = aj for some i 6= j. In this case, we argue as follows. Without

loss of generality we assume that i < j. Then, repeatedly using that ai = aj ,

we get

Φ(a1, . . . , ak+1; b1, . . . , bk−1)

=(−1)i〈a1 ∧ · · · ∧ ǎi ∧ · · · ∧ aj ∧ · · · ∧ ak+1; ai ∧ b1 ∧ · · · ∧ bk−1〉

+ (−1)j〈a1 ∧ · · · ∧ ai ∧ · · · ∧ ǎj ∧ · · · ∧ ak+1; aj ∧ b1 ∧ · · · ∧ bk−1〉

=(−1)i(−1)j−i−1〈a1 ∧ · · · ∧ aj ∧ · · · ∧ ǎj ∧ · · · ∧ ak+1; ai ∧ b1 ∧ · · · ∧ bk−1〉

+ (−1)j〈a1 ∧ · · · ∧ ai ∧ · · · ∧ ǎj ∧ · · · ∧ ak+1; aj ∧ b1 ∧ · · · ∧ bk−1〉

=0,

which completes the proof.
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Remark 3.2: In the proof of Theorem 4.1 in [14], Haab uses a special case of

Lemma 3.1, but his proof is incomplete. To describe the situation more carefully,

let T :
∧k

Rn →
∧k

Rn denote a symmetric linear map satisfying 〈Tξ, ξ〉 = 1 for

all decomposable unit vectors ξ ∈
∧k

Rn. From this hypothesis Haab apparently

concludes that T is the identity map (cf. [14, p. 126, l. 15-20]). While Lemma 3.1

implies that a corresponding fact is indeed true for maps T of a special form,

a counterexample for the general assertion is provided in [18, pp. 124-5]. For

a different counterexample, let k be even and let Q be the symmetric bilinear

form defined on
∧k

(R2k) by Q(w, w) = w ∧ w. This is a symmetric bilinear

form as k is even and w ∧ w ∈
∧2k

R2k so that
∧2k

R2k is one dimensional and

thus can be identified with the real numbers. In this example, Q(ξ, ξ) = 0 for

all decomposable k-vectors ξ, but Q is not the zero bilinear form.

Remark 3.3: Haab states a (simpler) version of the next lemma, [14, Cor 4.2,

p. 126], without proof.

Lemma 3.4: Let G, H : Rn → Rn be selfadjoint linear maps and assume that

∧kG + ∧kH = β ∧k id

for some constant β ∈ R with β 6= 0 and some k ∈ {1, . . . n − 1}. Then G and

H have a common orthonormal basis of eigenvectors. If k ≥ 2, then either G or

H is an isomorphism.

Proof: If k = 1, this is elementary so we assume that 2 ≤ k ≤ n − 1. We first

show that at least one of G or H is nonsingular. Assume that this is not the

case. Then both the kernels kerG and kerH have positive dimension. Choose k

linearly independent vectors v1, . . . , vk as follows: If kerG ∩ kerH 6= {0}, then

let 0 6= v1 ∈ kerG∩ker H and choose vectors v2, . . . , vk so that v1, v2, . . . , vk are

linearly independent. If kerG ∩ kerH = {0}, then there are nonzero v1 ∈ kerG

and v2 ∈ kerH . Then kerG ∩ kerH = {0} implies that v1 and v2 are linearly

independent. So in this case choose v3, . . . , vk so that v1, . . . , vk are linearly

independent. In either case

(∧kG + ∧kH)v1 ∧ v2 ∧ · · · ∧ vk

= Gv1 ∧ Gv2 ∧ · · · ∧ Gvk + Hv1 ∧ Hv2 ∧ · · · ∧ Hvk

= 0

which contradicts that ∧kG + ∧kH = β ∧k id and β 6= 0.

Without loss of generality we assume that H is nonsingular. Since G is

selfadjoint, there exists an orthonormal basis e1, . . . , en of eigenvectors of G
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with corresponding eigenvalues α1, . . . , αn ∈ R. For a decomposable vector

ξ = v1 ∧ · · · ∧ vk ∈
∧k

Rn r {0}, we define

[ξ] := span{v ∈ R
n : v ∧ ξ = 0} = span{v1, . . . , vk} ∈ G(n, k).

Then, for any 1 ≤ i1 < . . . < ik ≤ n, we get

H(span{ei1 , . . . , eik
}) = span{H(ei1), . . . , H(eik

)} = [H(ei1) ∧ · · · ∧ H(eik
)]

= [(∧kH)ei1 ∧ · · · ∧ eik
]

= [(β ∧k id− ∧k G)ei1 ∧ · · · ∧ eik
]

= [(β − αi1 · · ·αik
)ei1 ∧ · · · ∧ eik

]

= span{ei1 , . . . , eik
},

where we used that H is an isomorphism to obtain the second and the last

equality. Since k ≤ n − 1, we can conclude that

H(span{e1}) = H

( k+1
⋂

j=2

span{e1, . . . , ěj , . . . , ek+1}

)

=

k+1
⋂

j=2

H(span{e1, . . . , ěj , . . . , ek+1})

=
k+1
⋂

j=2

span{e1, . . . , ěj , . . . , ek+1}

= span{e1}.

By symmetry, we obtain that ei is an eigenvector of H for i = 1, . . . , n.

3.2. One proportional projection function. Subsequently, if K, K0 ⊂ Rn

are convex bodies with support functions of class C2, we put h := hK and

h0 := hK0
to simplify our notation. The following proposition is basic for the

proofs of our main results.

Proposition 3.5: Let K, K0 ⊂ Rn be convex bodies having support functions

of class C2, let K0 be centrally symmetric, and let k ∈ {1, . . . , n − 1}. Assume

that β > 0 is a positive constant such that

(3.4) Vk(K|U) = βVk(K0|U)

for all U ∈ G(n, k). Then, for all u ∈ Sn−1,

(3.5) ∧kL(h)(u) + ∧kL(h)(−u) = 2β ∧k L(h0)(u).
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Proof: Let u ∈ Sn−1 and a decomposable unit vector ξ ∈
∧k

TuSn−1

be fixed. Then there exist orthonormal vectors e1, . . . , ek ∈ u⊥ such that

ξ = e1 ∧ · · · ∧ ek. Put E := span{e1, . . . , ek, u} ∈ G(n, k + 1) and E0 :=

span{e1, . . . , ek} ∈ G(n, k). For any v ∈ E ∩ Sn−1,

Vk((K|E)|(v⊥ ∩ E)) = βVk((K0|E)|(v⊥ ∩ E)),

and therefore a special case of Theorem 2.1 in [9] (see also Theorem 3.3.2 in [7])

yields that

SE
k (K|E, ·) + SE

k ((K|E)∗, ·) = 2βSE
k (K0|E, ·),

where SE
k (M, ·) denotes the (top order) surface area measure of a convex

body M in E, and (K|E)∗ is the reflection of K|E through the origin. Since

hK|E = hK

∣

∣

E
is of class C2 in E, equation (2.1) applied in E implies that

(3.6) det
(

d2hK|E(u)
∣

∣

E0

)

+ det
(

d2hK|E(−u)
∣

∣

E0

)

= 2β det
(

d2hK0|E(u)
∣

∣

E0

)

.

Since e1, . . . , ek, u is an orthonormal basis of E, we further deduce that

det
(

d2hK|E(u)
∣

∣

E0

)

= det(d2hK(u)(ei, ej)
k
i,j=1) = det(〈L(h)(u)ei, ej〉

k
i,j=1)

= 〈∧kL(h)(u)ξ, ξ〉,

and similarly for the other determinants. Substituting these expressions into

(3.6) yields that

〈(∧kL(h)(u) + ∧kL(h)(−u))ξ, ξ〉 = 〈2β ∧k L(h0)(u)ξ, ξ〉

for all decomposable (unit) vectors ξ ∈
∧k

TuSn−1. Hence the required assertion

follows from Lemma 3.1.

It is useful to rewrite Proposition 3.5 in the notation of (2.2). The following

corollary is implied by Proposition 3.5 and Lemma 3.4.

Corollary 3.6: Let K, K0 ⊂ Rn be convex bodies with K0 being cen-

trally symmetric and of class C2
+ and K having C2 support function. Let

k ∈ {1, . . . , n − 1}. Assume that β > 0 is a positive constant such that

Vk(K|U) = βVk(K0|U)

for all U ∈ G(n, k). Then, for all u ∈ Sn−1,

(3.7) ∧kLh0
(h)(u) + ∧kLh0

(h)(−u) = 2β ∧k idTuSn−1 .

Moreover, for k ∈ {1, . . . , n − 2} the linear maps Lh0
(h)(u) and Lh0

(h)(−u)

have a common orthonormal basis of eigenvectors.
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4. The cases 1 ≤ i < j ≤ n − 2

4.1. Polynomial relations. In the sequel, it will be convenient to use

the following notation. If x1, . . . , xn are nonnegative real numbers and

I ⊂ {1, . . . , n}, then we put

xI :=
∏

ι∈I

xι.

If I = ∅, the empty product is interpreted as x∅ := 1. The cardinality of the

set I is denoted by |I|.

Lemma 4.1: Let a, b > 0 and 2 ≤ k < m ≤ n− 1 with am 6= bk. Let x1, . . . , xn

and y1, . . . , yn be positive real numbers such that

xI + yI = 2a and xJ + yJ = 2b

whenever I, J ⊂ {1, . . . , n}, |I| = k and |J | = m. Then there is a constant c > 0

such that xι/yι = c for ι = 1, . . . , n.

Proof: It is easy to see that this can be reduced to the case where m = n − 1.

Thus we assume that m = n − 1. By assumption,

xιxI + yιyI = 2a and xιxI′ + yιyI′ = 2a

whenever ι ∈ {1, . . . , n}, I, I ′ ⊂ {1, . . . , n}r {ι}, |I| = |I ′| = k − 1. Subtracting

these two equations, we get

(4.1) xι(xI − xI′) = yι(yI′ − yI).

By symmetry, it is sufficient to prove that x1/y1 = x2/y2. We distinguish

several cases.

Case 1: There exist I, I ′ ⊂ {3, . . . , n}, |I| = |I ′| = k − 1 with xI 6= xI′ . Then

(4.1) implies that
x1

y1
=

yI′ − yI

xI − xI′

=
x2

y2
.

Case 2: For all I, I ′ ⊂ {3, . . . , n} with |I| = |I ′| = k − 1, we have xI = xI′ .

Since 1 ≤ k − 1 ≤ n − 3, we obtain x := x3 = · · · = xn. From (4.1) we

get that also yI = yI′ for all I, I ′ ⊂ {3, . . . , n} with |I| = |I ′| = k − 1. Hence,

y := y3 = · · · = yn.

Case 2.1: x1 = x2. Since

x1x
k−1 + y1y

k−1 = 2a, x2x
k−1 + y2y

k−1 = 2a

and x1 = x2, it follows that y1 = y2. In particular, we have x1/y1 = x2/y2.
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Case 2.2: x1 6= x2.
Case 2.2.1: x1, x2, x3 are mutually distinct. Choose

I := {2} ∪ {5, 6, . . . , k + 2}, I ′ := {4} ∪ {5, 6, . . . , k + 2}.

Note that here k + 2 ≤ n and {5, 6, . . . , k + 2} is the empty set for k = 2. Then

xI 6= xI′ as x2 6= x4 = x3. Hence (4.1) yields that

(4.2)
x1

y1
=

yI′ − yI

xI − xI′

=
x3

y3
.

Next choose

I := {1} ∪ {5, 6, . . . , k + 2}, I ′ := {4} ∪ {5, 6, . . . , k + 2}.

Then xI 6= xI′ as x1 6= x4 = x3, and hence (4.1) yields that

(4.3)
x2

y2
=

yI′ − yI

xI − xI′

=
x3

y3
.

From (4.2) and (4.3), we get x1/y1 = x2/y2.
Case 2.2.2: x1 6= x2 = x3 or x1 = x3 6= x2. By symmetry, it is sufficient to

consider the first case. Since k − 1 ≤ n − 3 and using

x2x
k−1 + y2y

k−1 = 2a and x3x
k−1 + y3y

k−1 = 2a,

we get y2 = y3. By the assumption of the proposition, the equations

xk
2 + yk

2 = 2a,(4.4)

x1x
k−1
2 + y1y

k−1
2 = 2a,(4.5)

xn−1
2 + yn−1

2 = 2b,(4.6)

x1x
n−2
2 + y1y

n−2
2 = 2b.(4.7)

are satisfied. From (4.4) and (4.5), we get

xk−1
2 (x2 − x1) + yk−1

2 (y2 − y1) = 0.

Moreover, (4.6) and (4.7) imply that

xn−2
2 (x2 − x1) + yn−2

2 (y2 − y1) = 0.

Since x1 6= x2, we thus obtain

y1 − y2

x2 − x1
=

xk−1
2

yk−1
2

=
xn−2

2

yn−2
2

,

and therefore y2/x2 = 1. But now (4.4), (4.6) and x2 = y2 give xk
2 = a

and xn−1
2 = b, hence an−1 = bk, a contradiction. Thus Case 2.2.2 cannot

occur.
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Lemma 4.2: Let a, b > 0 and 1 ≤ k < m ≤ n − 1 with am 6= bk. Then

there exists a finite set F = Fa,b,k,m, depending only on a, b, k, m, such that the

following is true: if x1, . . . , xn are nonnegative and y1, . . . , yn are positive real

numbers such that

xI + yI = 2a and xJ + yJ = 2b

whenever I, J ⊂ {1, . . . , n}, |I| = k and |J | = m, then y1, . . . , yn ∈ F .

Remark 4.3: The condition am 6= bk is necessary in this lemma. For example,

if a = b = 1, let x1 = x2 = · · · = xn−1 = y1 = y2 = · · · = yn−1 = 1, xn = t and

yn = 1 − t, where t ∈ (0, 1). Then xI + yI = 2 for any nonempty subset I of

{1, . . . , n}.

Proof: It is easy to see that it is sufficient to consider the case m = n − 1.

First, we consider the case k = 1. Moreover, we assume that x1, . . . , xn are

positive. Then, by assumption,

(4.8) xι + yι = 2a and xJ + yJ = 2b

for ι = 1, . . . , n and J ⊂ {1, . . . , n}, |J | = n − 1. We put X := x{1,...,n} and

Y := y{1,...,n}. Then (4.8) implies

X

xℓ
+

Y

yℓ
= 2b, ℓ = 1, . . . , n.

Using yℓ = 2a − xℓ, this results in

2bx2
ℓ + (−X + Y − 4ab)xℓ + 2aX = 0.

The quadratic equation

2bz2 + (−X + Y − 4ab)z + 2aX = 0

has at most two real solutions z1, z2, hence x1, . . . , xn ∈ {z1, z2}.

Case 1: x1 = · · · = xn =: x. Then by (4.8) also y1 = · · · = yn =: y. It follows

that

(4.9) xn−1 + (2a − x)n−1 − 2b = 0.

The coefficient of highest degree of this polynomial equation is 2 if n is odd,

and (n − 1)2a if n is even. Hence (4.9) is not the zero polynomial. This shows

that (4.9) has only finitely many solutions, which depend on a, b, m only.
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Case 2: If not all of the numbers x1, . . . , xn are equal, and hence z1 6= z2, we

put

l := |{ι ∈ {1, . . . , n} : xι = z1}|.

Then 1 ≤ l ≤ n − 1 and n − l = |{ι ∈ {1, . . . , n} : xι = z2}|. Then (4.8) yields

that

zl−1
1 zn−l

2 + (2a − z1)
l−1(2a − z2)

n−l = 2b,(4.10)

zl
1z

n−l−1
2 + (2a − z1)

l(2a − z2)
n−l−1 = 2b.(4.11)

If l = 1, then (4.10) gives

(4.12) zn−1
2 + (2a − z2)

n−1 = 2b.

Since this is not the zero polynomial, there exist only finitely many possible

solutions z2. Furthermore, (4.11) gives

z1[z
n−2
2 − (2a − z2)

n−2] = 2b − 2a(2a − z2)
n−2.

If z2 6= a, then z1 is determined by this equation. The case z2 = a cannot

occur, since (4.12) with z2 = a implies that an−1 = b, which is excluded by

assumption.

If l = n − 1, we can argue similarly.

So let 2 ≤ l ≤ n−2. Note that 0 < z1, z2 < 2a since xι, yι > 0 and xι+yι = 2a.

Equating (4.10) and (4.11), we obtain

(4.13)
(2a − z1

z1

)l−1

=
( z2

2a − z2

)n−l−1

.

The positive points on the curve Zl−1
1 = Zn−l−1

2 , where Z1, Z2 > 0, are param-

eterized by Z1 = tn−l−1 and Z2 = tl−1, t > 0. Therefore setting

tn−l−1 = (2a − z1)/z1, tl−1 = z2/(2a − z2),

that is

(4.14) z1 = 2a/(1 + tn−l−1), z2 = 2atl−1/(1 + tl−1),

we obtain a parameterization of the solutions z1, z2 of (4.13). Now we substitute

(4.14) in (4.10) and thus get

(2a)n−1 t(l−1)(n−l)

(1 + tn−l−1)l−1(1 + tl−1)n−l

+(2a)n−1 t(l−1)(n−l−1)

(1 + tn−l−1)l−1(1 + tl−1)n−l
= 2b.
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Multiplication by (1+tn−l−1)l−1(1+tl−1)n−l yields a polynomial equation where

the monomial of largest degree is

2bt(n−l−1)(l−1)t(l−1)(n−l),

and therefore the equation is of degree (l − 1)(2(n− l)− 1). This equation will

have at most (l − 1)(2(n− l) − 1) positive solutions. Plugging these values of t

into (4.14) gives a finite set of possible solutions of (4.10) and (4.11), depending

only on a, b, m. This clearly results in a finite set of solutions of (4.8).

We turn to the case 2 ≤ k ≤ n − 2. We still assume that x1, . . . , xn are

positive. By assumption and using Lemma 4.1, we get

(1 + ck)yI = 2a and (1 + cn−1)yJ = 2b

for I, J ⊂ {1, . . . , n}, |I| = k, |J | = n − 1, where c > 0 is a constant such that

xι/yι = c for ι = 1, . . . , n. We conclude that

yĨ =
b

a

1 + ck

1 + cn−1

whenever Ĩ ⊂ {1, . . . , n}, |Ĩ| = n−1−k. Since 1 ≤ n−1−k ≤ n−2, we obtain

y1 = · · · = yn =: y. But then also x1 = · · · = xn =: x. Thus we arrive at

(4.15) xk + yk = 2a and xn−1 + yn−1 = 2b.

The set of positive real numbers x, y satisfying (4.15) is finite. In fact, (4.15)

implies that

(2a − xk)n−1 = yk(n−1) = (2b − xn−1)k,

and thus

(4.16)
n−1
∑

ι=0

(

n − 1

ι

)

(2a)ι(−1)n−1−ιxk(n−1−ι)

−

k
∑

ℓ=0

(

k

ℓ

)

(2b)ℓ(−1)k−ℓx(n−1)(k−ℓ) = 0.

The coefficient of the monomial of highest degree is (−1)n−1 + (−1)k−1, if

this number is nonzero, and otherwise it is equal to (n − 1)(2a)(−1)n−2, since

k(n − 2) > (n − 1)(k − 1). In any case, the left side of (4.16) is not the zero

polynomial, and therefore (4.16) has only a finite number of solutions, which

merely depend on a, b, k, m.
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Finally, we turn to the case where some of the numbers x1, . . . , xn are zero.

For instance, let x1 = 0. Then we obtain that

y1yI′ = 2a, y1yJ′ = 2b

whenever I ′, J ′ ⊂ {2, . . . , n}, |I ′| = k−1 and |J ′| = n−2, and thus yJ′/yI′ = b/a.

Therefore yĨ = b/a for all Ĩ ⊂ {2, . . . , n} with |Ĩ| = n−1−k. Using that k ≥ 1,

we find that y := y2 = · · · = yn = (b/a)1/(n−1−k). Since y1y
k−1 = 2a, we again

get that y1, . . . , yn can assume only finitely many values, depending only on

a, b, k, m = n − 1.

4.2. Proof of Theorem 1.1 for 1 ≤ i < j ≤ n − 2. An application of

Corollary 3.6 shows that, for u ∈ Sn−1,

(4.17) ∧i Lh0
(h)(u) + ∧iLh0

(h)(−u) = 2α ∧i idu⊥ ,

(4.18) ∧j Lh0
(h)(u) + ∧jLh0

(h)(−u) = 2β ∧j idu⊥ ,

Since i < j ≤ n − 2, Corollary 3.6 also implies that, for any fixed u ∈ Sn−1,

Lh0
(h)(u) and Lh0

(h)(−u) have a common orthonormal basis of eigenvectors.

Case 1: αj 6= βi. We will show that there is a finite set, F∗
α,β,i,j, independent

of u, such that

(4.19) det(Lh0
(h)(u)) =

detL(h)(u)

det L(h0)(u)
∈ F∗

α,β,i,j, for all u ∈ S
n−1.

Assume this is the case. Then, since h, h0 are of class C2, the function on the

left-hand side of (4.19) is continuous on the connected set Sn−1 and hence must

be equal to a constant λ ≥ 0. If λ = 0, then det L(h) ≡ 0 and, as detL(h)

is the density of the surface area measure Sn−1(K, ·) with respect to spherical

Lebesgue measure, this implies that the surface area measure Sn−1(K, ·) ≡ 0.

But this cannot be true, since K is a convex body (with nonempty interior).

Therefore λ > 0. Again using that detL(h)(u) is the density of the surface

measure Sn−1(K, ·), and similarly for h0 and K0, we obtain Sn−1(K, ·) =

Sn−1(λ
1/(n−1)K0, ·). But then Minkowski’s inequality and its equality condi-

tion imply that K and K0 are homothetic (see [21, Thm 7.2.1]).

To construct the set F∗
α,β,i,j, we first put 0 in the set. Then we only have

to consider the points u ∈ Sn−1 where detLh0
(h)(u) 6= 0. At these points

(4.17) and (4.18) show that the assumptions of Lemma 4.2 are satisfied (with n

replaced by n−1). Hence there is a finite set Fα,β,i,j, such that for any u ∈ Sn−1

with detLh0
(h)(u) 6= 0, if x1, . . . , xn−1 are the eigenvalues of Lh0

(h)(−u) and
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y1, . . . , yn−1 are the eigenvalues of Lh0
(h)(u), then y1, . . . , yn−1 ∈ Fα,β,i,j. Let

F∗
α,β,i,j be the union of {0} with the set of all products of n − 1 numbers each

from the set Fα,β,i,j.

Case 2: If αj = βi, then the assumptions can be rewritten in the form

(4.20)
(Vj(K0|U)

Vj(K|U)

)1/j

=
(Vi(K0|L)

Vi(K|L)

)1/i

for all U ∈ G(n, j) and all L ∈ G(n, i). Let U ∈ G(n, j) be fixed. By homogene-

ity we can replace K0 by µK0 on both sides of (4.20), where µ > 0 is chosen

such that Vj(µK0|U) = Vj(K|U). We put M0 := µK0|U and M := K|U . Then,

for any L ∈ G(n, i) with L ⊂ U , we have

Vj(M) = Vj(M0) and Vi(M |L) = Vi(M0|L).

By the theorem stated in the introduction of [5] (in [10, § 4] the authors review

the results of [5] and give a somewhat shorter proof) this implies that M is

a translate of M0 and therefore K|U and K0|U are homothetic. Since j ≥ 2,

Theorem 3.1.3 in [7] shows that K and K0 are homothetic.

5. The cases 2 ≤ i < j ≤ n − 1 with i 6= n − 2

5.1. Existence of relative umbilics. We need another lemma concerning

polynomial relations.

Lemma 5.1: Let n ≥ 5, k ∈ {2, . . . , n−3}, γ > 0, and let positive real numbers

0 < x1 ≤ x2 ≤ · · · ≤ xn−1 be given. Assume that

(5.1) xI + xI∗ = 2γ

for all I ⊂ {1, . . . , n − 1}, |I| = k, where I∗ := {n − i : i ∈ I}. Then

x1 = · · · = xn−1.

Proof: Choosing I = {1, 2, . . . , k} in (5.1), we get

(5.2) x1x2 · · ·xk + xn−k · · ·xn−2xn−1 = 2γ.

Choosing I = {1, n− k, . . . , n − 2} in (5.1), we obtain

(5.3) x1xn−k · · ·xn−2 + x2 · · ·xkxn−1 = 2γ.

Subtracting (5.3) from (5.2), we arrive at

(5.4) xn−k · · ·xn−2(xn−1 − x1) + x2 · · ·xk(x1 − xn−1) = 0.
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Assume that x1 6= xn−1. Then (5.4) implies that

(5.5) x2 · · ·xk = xn−k · · ·xn−2.

We assert that x2 = xn−2. To verify this, we first observe that 2 ≤ k ≤ n − 3

and x2 ≤ · · · ≤ xn−2. After cancellation of factors with the same index on both

sides of (5.5), we have

(5.6) x2 · · ·xl = xn−l · · ·xn−2,

where 2 ≤ l < n − l (here we use k ≤ n − 3). Since

xl ≤ xn−l, xl−1 ≤ xn−l+1, . . . x2 ≤ xn−2,

equation (5.6) yields that x2 = · · · = xn−2.

Now (5.2) turns into

(5.7) x1x
k−1
2 + xk−1

2 xn−1 = 2γ.

From (5.1) with I = {2, . . . , k + 1} and using that k ≤ n − 3, we obtain

(5.8) xk
2 + xk

2 = 2γ.

Hence (5.7) and (5.8) show that

(5.9) x1 + xn−1 = 2x2.

Applying (5.1) with I = {1, . . . , k − 1, n− 1} and using (5.8), we get

2x1x
k−2
2 xn−1 = 2γ = 2xk

2 ,

hence

(5.10) x1xn−1 = x2
2.

But (5.9) and (5.10) give x1 = xn−1, a contradiction.

This shows that x1 = xn−1, which implies the assertion of the lemma.

Proposition 5.2: Let K, K0 ⊂ Rn be convex bodies with K0 centrally sym-

metric and of class C2
+ and K having a C2 support function. Let n ≥ 5 and

k ∈ {2, . . . , n − 3}. Assume that there is a constant β > 0 such that

Vk(K|U) = βVk(K0|U)
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for all U ∈ G(n, k). Then there exist u0 ∈ Sn−1 and r0 > 0 such that

Lh0
(h)(u0) = Lh0

(h)(−u0) = r0 idTu0
Sn−1 .

Proof: For u ∈ Sn−1, let r1(u), . . . , rn−1(u) denote the eigenvalues of the self-

adjoint linear map Lh0
(h)(u): TuSn−1 → TuSn−1, which are ordered such that

r1(u) ≤ · · · ≤ rn−1(u).

Then we define a continuous map R: Sn−1 → Rn−1 by

R(u) := (r1(u), . . . , rn−1(u)).

By the Borsuk–Ulam theorem (cf. [13, p. 93] or [19]), there is some u0 ∈ Sn−1

such that

(5.11) R(u0) = R(−u0).

Corollary 3.6 shows that Lh0
(h)(u0) and Lh0

(h)(−u0) have a common orthonor-

mal basis e1, . . . , en−1 ∈ u⊥
0 of eigenvectors and by Lemma 3.4 at least one of

Lh0
(h)(u0) or Lh0

(h)(−u0) is nonsingular. But R(u0) = R(−u0) implies that

Lh0
(h)(u0) and Lh0

(h)(−u0) have the same eigenvalues and thus they are both

nonsingular. Therefore the eigenvalues of both Lh0
(h)(u0) and Lh0

(h)(−u0) are

positive.

We can assume that, for ι = 1, . . . , n−1, eι is an eigenvector of Lh0
(h)(u0) cor-

responding to the eigenvalue rι := rι(u0). Next we show that eι is an eigenvector

of Lh0
(h)(−u0) corresponding to the eigenvalue rn−ι(−u0). Let r̃ι denote the

eigenvalue of Lh0
(h)(−u0) corresponding to the eigenvector eι, ι = 1, . . . , n− 1.

Since r̃1, . . . , r̃n−1 is a permutation of r1(−u0), . . . , rn−1(−u0), it is sufficient to

show that r̃1 ≥ · · · ≥ r̃n−1. By Corollary 3.6, for any 1 ≤ i1 < · · · < ik ≤ n − 1

we have

(∧kLh0
(h)(u0) + ∧kLh0

(h)(−u0))ei1 ∧ · · · ∧ eik
= 2βei1 ∧ · · · ∧ eik

,

and therefore

(5.12) ri1 · · · rik
+ r̃i1 · · · r̃ik

= 2β.

For ι ∈ {1, . . . , n−2}, we can choose a subset I ⊂ {1, . . . , n−1} with |I| = k−1

and ι, ι + 1 /∈ I, since k + 1 ≤ n − 1. Then (5.12) yields

rIrι + r̃I r̃ι = rIrι+1 + r̃I r̃ι+1 ≥ rIrι + r̃I r̃ι+1,
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which implies that r̃ι ≥ r̃ι+1.

Let 1 ≤ i1 < · · · < ik ≤ n − 1 and I := {i1, . . . , ik}. Applying the linear map

∧kLh0
(h)(u0) + ∧kLh0

(h)(−u0) to ei1 ∧ · · · ∧ eik
, we get

(5.13)
∏

ι∈I

rι(u0) +
∏

ι∈I

rn−ι(−u0) = 2β.

From (5.11) and (5.13) we conclude that the sequence

0 < r1(u0) ≤ · · · ≤ rn−1(u0)

satisfies the hypothesis of Lemma 5.1. Thus, r1(u0) = · · · = rn−1(u0) =: r0.

But R(−u0) = R(u0) implies that also r1(−u0) = · · · = rn−1(−u0) = r0, which

yields the assertion of the proposition.

5.2. Proof of Theorem 1.1: remaining cases. It remains to consider

the cases where j = n − 1. Hence, we have 2 ≤ i ≤ n − 3. Proposition 5.2

implies that there is some u0 ∈ Sn−1 such that the eigenvalues of Lh0
(h)(u0)

and Lh0
(h)(−u0) are all equal to r0 > 0. But then Corollary 3.6 shows that

ri
0 + ri

0 = 2α = 2
Vi(K|L)

Vi(K0|L)
,

for all L ∈ G(n, i), and

rj
0 + rj

0 = 2β = 2
Vj(K|U)

Vj(K0|U)
,

for all U ∈ G(n, j). Hence, we get

(Vj(K0|U)

Vj(K|U)

)1/j

=
(Vi(K0|L)

Vi(K|L)

)1/i

for all U ∈ G(n, j) and all L ∈ G(n, i). Thus again equation (4.20) is available

and the proof can be completed as before.

5.3. Proof of Corollary 1.3. Let K have constant width w. Then,

[2, §64], the diameter of K is also w and any point x ∈ ∂K is the end-

point of a diameter of K. That is, there is y ∈ ∂K such that |x − y| = w.

Then K is contained in the closed ball B(y, w) of radius w centered at y and

x ∈ ∂B(y, w)∩K. Thus if ∂K is C2, then ∂K is internally tangent to the sphere

∂B(y, w) at x. Therefore all the principle curvatures of ∂K at x are greater than

or equal to the principle curvatures of ∂B(y, w) at x, and thus all the principle
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curvatures of ∂K at x are at least 1/w. Whence the Gauss–Kronecker curvature

of ∂K at x is at least 1/wn−1. As x was an arbitrary point of ∂K this shows

that if ∂K is a C2 submanifold of Rn and K has constant width, then ∂K is of

class C2
+. Corollary 1.3 now follows directly from Corollary 1.2.

6. Bodies of revolution

We now give a proof of Proposition 1.4. By assumption, there are constants

α, β > 0 such that

Vi(K|L) = αVi(K0|L) and Vn−1(K|U) = βVn−1(K0|U),

for all L ∈ G(n, i) and U ∈ G(n, n − 1), where i ∈ {1, n − 2}. We can assume

that the axis of revolution contains the origin and has direction e ∈ Sn−1. Let

u ∈ S
n−1

r {±e}. Then there are ϕ ∈ (−π/2, π/2) and v0 ∈ S
n−1 ∩ u⊥ such

that u = cosϕv0 + sin ϕe. For the sake of completeness we include a proof of

the following lemma.

Lemma 6.1: The map L(hK)(u) is a multiple of the identity map on e⊥ ∩ v⊥0
and has − sin ϕv0 + cosϕe as an eigenvector.

Proof: By rotational invariance, there is some r(ϕ) > 0 such that

(6.1) hK(cosϕv + sin ϕ|v|e) = r(ϕ)|v|,

for all v ∈ e⊥. Differentiating (6.1) twice with respect to v ∈ e⊥ yields that, for

any v, w ∈ e⊥ ∩ v⊥0 ,

cos2 ϕd2hK(cosϕv0 + sin ϕe)(v, w) = r̃(ϕ)〈v, w〉,

where r̃(ϕ) = r(ϕ)−sin ϕdh(cos ϕv0+sinϕe)(e). Moreover, differentiating (6.1)

with respect to v, we obtain, for any v ∈ e⊥ ∩ v⊥0 ,

(6.2) dhK(cos ϕv0 + sin ϕe)(v) = 0.

Differentiating (6.2) with respect to ϕ, we obtain

d2hK(cosϕv0 + sin ϕe)(v,− sin ϕv0 + cosϕe) = 0.

Thus, if v1, . . . , vn−2 is an orthonormal basis of e⊥∩v⊥0 , then − sinϕv1 +cosϕe,

v1, . . . , vn−2 is an orthonormal basis of eigenvectors of L(hK)(u) with corre-

sponding eigenvalues x1 and x2 = · · · = xn−1 =: x.
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Proof of Proposition 1.4: Let K and K0 be as in Proposition 1.4 and let e

be a unit vector in the direction of the common axis of rotation of K and

K0. Let h be the support function of K and h0 the support function of K0.

Let u ∈ Sn−1 ∩ e⊥ be a point in the equator of Sn−1 defined by e. As e

is orthogonal to u, the vector e is in the tangent space to Sn−1 at u. Let

e2, . . . , en−1 be an orthonormal basis for {u, e}⊥. Then e, e2, . . . , en−1 is an

orthonormal basis for both TuSn−1 and T−uSn−1. By Lemma 6.1 there are

eigenvalues x1, and x2 = x3 = · · · = xn−1 =: x such that L(h)(u)e = x1e

and L(h)(u)ej = xej for j = 2, . . . , n− 1. By rotational symmetry we also have

L(h)(−u)e = x1e and L(h)(−u)ej = xej for j = 2, . . . , n−1. Likewise, if y1, and

y2 = y3 = · · · = yn−1 =: y are the eigenvalues of L(h0)(u), then they are also

the eigenvalues of L(h0)(−u) and L(h0)(±u)e = y1e and L(h0)(±u)ej = yej for

j = 2, . . . , n − 1. By Proposition 3.5 the polynomial relations

x1x
i−1 + x1x

i−1 = 2αy1y
i−1,

xi + xi = 2αyi,

x1x
n−2 + x1x

n−2 = 2βy1y
n−2

hold. The first two of these yields that x/y = x1/y1 and therefore

αn−1 = (x/y)i(n−1) = βi.

As in the proof of Case 2 of the proof of Theorem 1.1 this gives that equa-

tion (4.20) holds which in turn implies that K and K0 are homothetic.
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